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Introduction
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Figure 1. Mitochondrial phylogeny of Last Glacial Period field voles. A. Sampling locations of
vole specimens and stratigraphic information for ancient samples. B. Tip-dated phylogeny of field voles
based on mtDNA genomes reconstructed in BEAST 1.10.4. Tips are anotated with estimated ages of
ancient specimens (_e_). Labels in red and bold indicate directly radiocarbon dated specimens. Dots at
nodes indicat posterior probability above 0.95. C. Demographic trajectory of the short-tailed field voles

The field vole is a complex of three cryptic species. The short-tailed field vole (Microtus
agrestis) is present over much of Eurasia, the Mediterranean field vole (Microtus lavernedii) is
found in southern Europe, and the Portuguese field vole (Microtus rozianus) is limited to western
Spain and Portugal [1]. Previous studies showed discordance of mitochondrial (mtDNA) and
nuclear gene trees and suggested that the Portuguese field voles diverged from Mediterranean
and short-tailed field voles ca. 70 thousand years (ka) ago, while the two latter separated about 25
ka ago during the Last Glacial Maximum (LGM) [2-3]. The latter was reinforced by the Ecological

Niche Modeling which predicted three potential glacial refugial areas during the LGM [3].
Previous reconstructions of demographic history of the short-tailed field vole showed a

species-wide bottleneck around the Younger Dryas (12.5-11.7 ka ago) [4-5]. However, little is

known about earlier population dynamics during the Late Pleistocene.
Here, we decided to reassess the previous divergence estimates and to provide new

information on evolutionary history of this species complex using mitochondrial and genomic data
from ancientand modern field vole specimens.

Workflow and dataset

» Target enrichment of vole mtDNA used to generate mitogenomes of 75 ancient and 47 modern
specimens ranging in age between 0 and ca. 70 ka (Fig. 1A).

» Ten ancient specimens directly radiocarbon dated to calibrate the molecular clock - collagen
pretreatmentin MPI EVA + AMS in ETH and Aix-en-Provence.

* Phylogenetic analyses, molecular age estimation of not dated specimens and demographic
reconstruction performed using BEAST 1.10.4 [6].

* Shotgun sequencing of 11 ancient (coverage: 0.3-2.57x%; median: 0.97x ) and 14 museum and
modern genomes (coverage: 0.73-36.8x; median: 8.8x).

Mitochondrial phylogeny

 We detected three previously recognised field vole mtDNA lineages and a new one (ltalian)
confined to the Late Pleistocene specimens from Italian Peninsula.

* Divergence of main mtDNAlineages estimated to Marine Isotope Stage (MIS) 7 and MIS 5 (Fig
1B) suprisingly similar to the divergence of main mtDNA lineages in some cold adapted small
mammals: narrow-headed voles, collared lemmings and common voles [7].

» Short-tailed field vole suffered a bottleneck around LGM and and post-LGM recovery (Fig. 1C)
earlier than previously estimated, but mtDNA diversity was higher during Boling-Allerod
(14.7-12.5 kaago) than today.

Genomic data

* MDS revealed three clusters corresponding to main mtDNA lineages. The oldest specimens
(ca. 70 and 40ka old) are only slightly shifted towards the centre of the plot providing terminus
ante quemforthe divergence offield vole species (Fig. 2B).

* Both PSMC and hPSMC support the divergence of Portuguese field vole ca. 200 ka ago and
subsequent separation of Mediterranean and short-tailed field voles about 100 ka ago (Fig. 2).

* The Portuguese field-vole had overall the lowest Ne (Fig. 2C).

* Short-tailed and Mediterranean field voles suffered a bottleneck around LGM and a recovery

Conclusions

* The divergence for field-vole species took place much earlier
than previously estimated around 200ka (MIS7) and 100ka
(MIS5) periods recently suggested to be important hotspots for
differentiation[7].

* Discordance of mtDNA and genomic phylogenies - evidenced by
different order of divergence - the case of ancient mtDNA
capture?

» Distinct mtDNA lineage on ltalian peninsula - conforms with
theory of Mediterranean peninsulas as a source of endemism [7].

 Both mtDNA and genomic data supports a bottleneck in short-
tailed field vole around LGM - where there two bottinecks around
LGMand YD?

To be done

» Use D-statatistics to investigate potential ancient introgression

 Use modeling on the genomic data to estimate the timing of
bottleneck more precisely.

 Check for the genomic signatures of adaptation of field-vole
species to differnet ecolgical niches.
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Figure 2. Evolutionary history of field voles. A. Sampling locations of vole specimens with nuclear genomes sequenced. B. MDS plot
based IBS matrix (12M variable positions) generated using random read sampling with Angsd. Ancient samples are annotated with their
estimated age. C. PSMC plots of two samples from each species downsampled to 20x genomic coverage. D. hybridPSMC plots for pairs of
individuals from different species. In C and D we used a generation time of 0.5 year and mutation rate estimated for mouse 5x10°
substitution/site/year™.
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