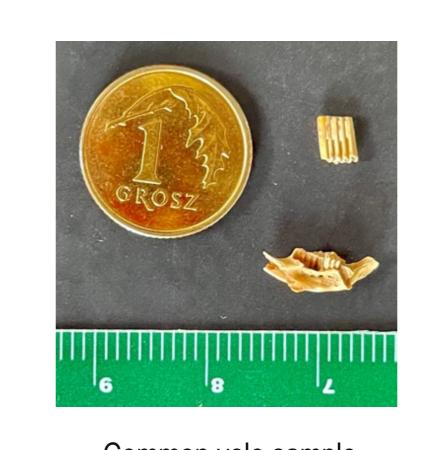


Molecular Age Estimation of Rodent Remains as a Means to Date Late Pleistocene sites

Mateusz Baca¹, Barara Bujalska¹, Danijela Popović¹, Claudio Berto², Magdalena Krajcarz³, Katarzyna Zarzecka-Szubińska⁴, Andrzej Wiśniewski⁵, Adam Nadachowski⁶

- 1 Centre of New Technologies, University ow Warsaw, Warsaw, Poland
- 2- Faculty of Archaeology, University ow Warsaw, Warsaw, Poland
- 3 Institute of Archaeology, Nicolaus Copernicus University in Toruń, Toruń, Poland
- 4 Department of Palaeozoology, University of Wrocław, Wrocław, Poland
- 5 Department of Stone Age Archaeology, University of Wrocław, Wrocław, Poland 6 - Institute of Systematics and Evolution of Animals PAS, Krakow, Poland



Molecular age estimation

Absolute dating of artefacts and sites is a cornerstone of palaeontological and archaeological research, enabling the reconstruction of evolutionary timelines, archaeological cultures, and faunal successions. Radiocarbon dating and thermally/optically stimulated luminescence are among the most widely used methods, but each has limitations—particularly regarding their applicable temporal range and preservation requirements. As an alternative or complement to these approaches, molecular age estimation infers the age of biological remains based on their phylogenetic placement. Because organisms accumulate DNA mutations over generations, the number of genetic differences between specimens can be used—within a calibrated phylogenetic framework—to estimate when an organism lived [1].

Here, we demonstrate that molecular dating of small mammal remains from palaeontological sites is a viable and valuable supplement to traditional dating methods, especially when collagen preservation or stratigraphic context prevents radiocarbon analysis.

Leave-one-out analysis on the directly radiocarbon dated samples Calibrated 14C age Narrow-headed voles (median and 94.5% range) 60 Estimated age Age (ka BP) (median and 95% HPD) **Common voles** Age (ka BP) 50 MI263 Molecular age estimates of small mammals are accurate

Common vole sample used for DNA extraction

Date Notation median 95% HPD interval – molecular estimates

95.4% range (2-sigma) – AMS ¹⁴C dates

Perspektywiczna

Labajowa

100 200 km

Obłazowa WE

Shelter in Smoleń III,

Pietraszyn 11

Calibration datasets

narrow-headed vole (Stenocranius sp.) - mitogenomes, 11 radiocarbon dated, 6 modern samples [2](Baca et al., 2023a)

field vole (*Microtus agrestis*) - mitogenomes, 11 radiocarbon dated, 68 modern [3](Baca et al., 2025)

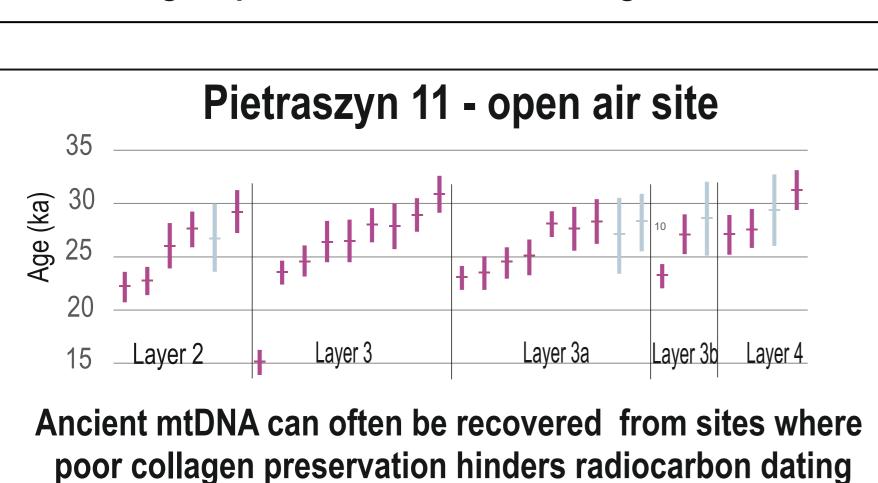
root vole (Alexandromys oeconomus) - mitogenomes, 10 radiocarbon dated, 32 modern [4](Żeromska et al., submitted)

common vole (Microtus arvails) - 4.3 kb mtDNA fragment, 20 radiocarbon dated, 60 modern [5,6](Baca et al., 2020; 2023b)

collared lemming (Dicrostonyx torquatus) - mitogenomes, 10 radiocarbon dated, 60 modern [7] (Lord et al., 2022)

These species constitute the majority of small mammal assemblages at most of the Late Pleistocene sites abundant material for sampling

Phylogenetic analyses

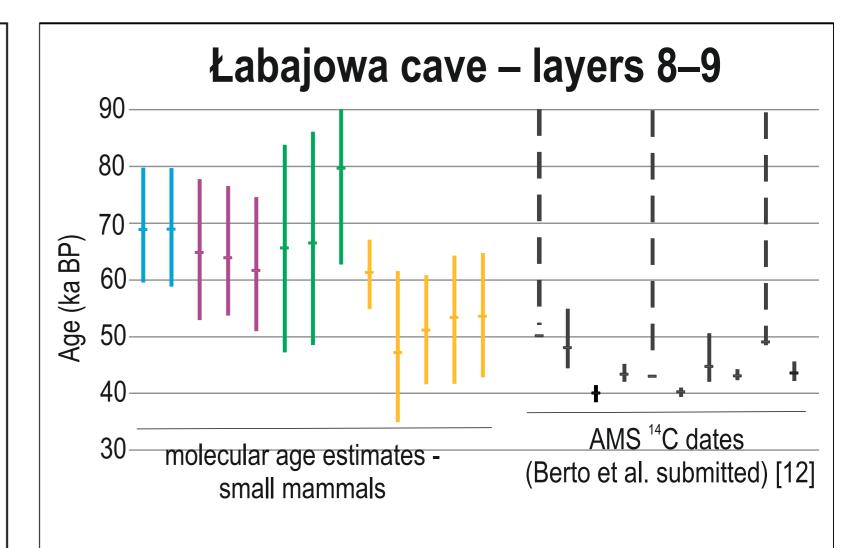

- Molecular ages estimated using BEAST 1.10
- Radiocarbon dated and modern samples used to clibrate the molecular clock
- Appropriate clock, tree prior selected using MLE, partitioning scheme and substitution model selected using PartitionFinder2
- Each undated sample was tip-dated in a separate BEAST run using a wide gamma prior on the age and operator weight increased to 5

Conclusions

- Molecular age estimates of small mammal remains can complement other absolute dating methods.
- Often more accurate than molecular age estimates of large mammals.
- Multiple independent datasets help control for species-specific biases.
- MtDNA sequences can be retrieved from sites with poor collagen preservation.
- Better callibration datasets required to improve dating of Holocene samples

1. Shapiro B, et al. 2011 A bayesian phylogenetic method to estimate unknown sequence ages. Mol Biol Evol 28, 879–887 2. Baca M et al. 2023 Ancient DNA of narrow-headed vole reveal common features of the Late Pleistocene population dynamics in cold-adapted small mammals. PRSB 290. 3. Baca M et al. 2025 The evolutionary history of the field vole species complex revealed by modern and ancient genomes. BioRxiv 4. Źeromska et al. Reconstruction of phylogeographic relationships and evolution of tundravole, Alexandromys oeconomus (Rodentia, Cricetidae), based on ancientDNA (submitted). 5. Baca M et al. 2020 Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quat Sci Rev 233, 106239 6. Baca M et al. 2023 Ancient DNA reveals interstadials as a driver of common vole population dynamics during the last glacial period. J Biogeogr 50, 183–196. 7. Lord E et al. 2022 Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol Evol 22, 126 8. M, Krajcarz M. 2023 New insights into Late Pleistocene cave hyena chronology and population history - the case of Perspektywiczna cave, Poland. Radiocarbon 6(5): 1038–1056 9. Gretzinger J et al. 2019 Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear. Sci Rep 9, 1–11 **10.** Krajcarz MT et al. 2020 Shelter in Smoleń III - A unique example of stratified Holocene clastic cave sediments in Central Europe, a lithostratigraphic stratotype and a record of regional paleoecology. PLoS One 15(2): e0228546 11. Lemanik A et al. 2020 The impact of major warming at 14.7 ka on environmental changes and activity of Final Palaeolithic hunters at a local scale (Orawa-Nowy Targ Basin, Western Carpathians, Poland). Archaeol Anthropol Sci 12, 66 12. Berto, C et al. Chronological, paleoclimatic, and paleoenvironmental data from Łabajowa Cave (Kraków-Częstochowa Upland, Poland): a comprehensive approach for investigating a

Perspektywiczna cave – layer 7c 80 narrow-headed vole field vole root vole common vole cave hyena cave bear Age (ka ago) 40 + + + 35 AMS ¹⁴C dates on bone collagen Krajcarz et al. 2023 [8] molecular age estimates molecular age estimates small mammals Gretzinger et al. 2019 [9] Molecular age estimates of small mammals show higher precision than those of large mammals



Obłazowa WE ago) Age (ka ¹⁴C AMS dates, molecular age estimates small mammals Lemanik et al. 2021 [11] Age estimates from independent datasets allow identification of potential species-specific biases

Location of the mentioned paleontological sites

Shelter in Smoleń III Unique stratified Holocene sequence AMS ¹⁴C dates Krajcarz et al. 2020 [10] _ Age (ka ago) molecular age estimates small mammals

Problems with dating of Holocene samples

Molecular age estimates may improve dating of layers beyond the radiocarbon limit